Quantifying Land Cover Change Due to Petroleum Exploration and Production in the Haynesville Shale Region Using Remote Sensing

نویسندگان

  • Daniel Unger
  • I-Kuai Hung
  • Kenneth W. Farrish
  • Darinda Dans
چکیده

The Haynesville Shale lies under areas of Louisiana and Texas and is one of the largest gas plays in the U.S. Encompassing approximately 2.9 million ha, this area has been subject to intensive exploration for oil and gas, while over 90% of it has traditionally been used for forestry and agriculture. In order to detect the landscape change in the past few decades, Landsat Thematic Mapper (TM) imagery for six years (1984, 1989, 1994, 2000, 2006, and 2011) was acquired. Unsupervised classifications were performed to classify each image into four cover types: agriculture, forest, well pad, and other. Change detection was then conducted between two classified maps of different years for a time series analysis. Finally, landscape metrics were calculated to assess landscape fragmentation. The overall classification accuracy ranged from 84.7% to 88.3%. The total amount of land cover change from 1984 to 2011 was 24%, with 0.9% of agricultural land and 0.4% of forest land changed to well pads. The results of Patch-Per-Unit area (PPU) index indicated that the well pad class was highly fragmented, while agriculture (4.4-8.6 per sq km) consistently showed a higher magnitude of fragmentation than forest (0.8-1.4 per sq km). Quantifying Land Cover Change Due to Petroleum Exploration and Production in the Haynesville Shale Region Using Remote Sensing

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Land cover land use mapping and change detection analysis using geographic information system and remote sensing

Land cover/land use categories are relevant components in land management. Understanding how land cover/land use change over time is necessary to assess the consequences of humans and natural stressors on the earth’s environment and resources. The aim of the study was to map and monitor the spatial and temporal change in land cover/land use for the periods of 1977, 1991 and 2016 and to predict ...

متن کامل

Detection of Land Use Changes for Thirty Years Using Remote Sensing and GIS (Case Study: Ardestan Area)

Due to the increase of changes in the land uses mainly resulting from humaninterferences, monitoring the changes and evaluating their trend and environmental effectsfor future planning and management are essential. In the present study, an attempt is madeto observe the changes which had occurred in Ardestan area during a period of 30 yearsusing some satellite images. Different kinds of data for...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Assessment of land use changes using remote sensing and GIS and their implications on climatic variability for Balachaur watershed in Punjab, India

Abstract Decadal changes in land use/land cover for Balachaur watershed in Nawanshahar district, Punjab, India were studied using black and white aerial photographs for March 1984 on approximately 1:20,000 scale and multidate geocoded false colour composites (FCC) of IRS-1D LISS-III on 1:50,000 scale for March 2002, September 2002, and May 2003 and interpreted visually to prepare land use/land...

متن کامل

Simulation and prediction of land use and land cover change using GIS, remote sensing and CA-Markov model

This study analyzes the characteristics of land use/land cover change in Jordan’s Irbid governorate, 1984–2018, and predicts future land use/land cover for 2030 and 2050 using a cellular automata-Markov model. The results inform planners and decision makers of past and current spatial dynamics of land use/land cover change and predicted urban expansion, for a better understanding and successful...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAGR

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015